Как сделать матрицу по социометрии


Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии



 

Содержание

Построение социометрической матрицы

По данным опроса испытуемых вначале составляется социометрическая матрица, по горизонтали и по вертикали которой в одном и том же порядке перечислены фамилии всех членов исследуемой группы. Нижние строки и крайние правые столбцы матрицы являются итоговыми. Заполнение матрицы начинается с внесения в нее выборов, сделанных каждым человеком. Для этого в клетках пересечения строки соответствующего испытуемого со столбцами тех, кого он выбрал, проставляются соответственно цифры 1, 2, 3. Цифра 1 ставится в столбец того члена группы, который рассматриваемым испытуемым оказался выбранным в первую очередь; цифра 2 – в столбце того члена группы, который был выбран вторым и т.д. Аналогичным образом, но цифрами другого цвета, в матрице отмечаются отклонения (тех, с кем не хотели в дальнейшем взаимодействовать). Обычно все данные, касающиеся положительных выборов, отмечают в матрице красным цветом, а отклонения – синим. В матрицу заносятся также результаты ответов на третий и четвертый вопросы; когда испытуемый предполагает, что его выберет кто-либо, то в столбец этого человека проставляются красные скобки, а скобками синего цвета отмечаются предполагаемые отклонения.

Социометрическая матрица

Ф.И.О. Иванов Петров Сидоров ВС ОС ОВ ОО Иванов 2 ( ) Петров 1 Сидоров 3 ( ) 1 2 Обозначение

показателей

ВП 2 1 0 ОП ОВ ОС ВВ ВО

В итоговых нижних строках и правых столбцах используются следующие обозначения:

  • ВС – количество выборов, сделанных данным человеком;
  • ОС – количество отклонений, сделанных данным человеком;
  • ВП – сумма выборов, полученных данным человеком;
  • ОП – сумма отклонений, полученных данным человеком;
  • ОВ – количество ожидаемых выборов;
  • ОО – количество ожидаемых отклонений;
  • ВВ – количество взаимных выборов;
  • ВО – количество взаимных отклонений.

В нижние строки матрицы заносятся результаты о количестве полученных выборов (независимо, в какую очередь – 1, 2, 3-ю) и отклонений, о количестве взаимных выборов и отклонений, о количестве ожидаемых от данного лица выборов и отклонений.

В крайние правые столбцы матрицы заносятся результаты о количестве сделанных выборов и отклонений, о количестве ожидаемых данным лицом выборов и отклонений.

Число выборов, полученных каждым человеком, является мерилом положения его в системе личных отношений, измеряет его «социометрический статус». Люди, которые получают наибольшее количество выборов, пользуются наибольшей популярностью, симпатией, их именуют «звездами». Обычно к группе «звезд» по числу полученных выборов относят тех, кто получает 6 и более выборов (если, по условиям опыта каждый член группы делал 3 выбора). Если человек получает среднее число выборов, его относят к категории «предпочитаемых», если меньше среднего числа выборов (1-2 выбора), то к категории «пренебрегаемых», если не получил ни одного выбора, то к категории «изолированных», если получил только отклонения – то к категории «отвергаемых».

С целью более достоверного выделения «звезд» и «пренебрегаемых» используют некоторые методы статистического анализа. В ходе статистического анализа полученного первичного материала устанавливают критические значения количества выборов, границы доверительного интервала, за пределами которого полученные выборы можно считать статистически достоверными. Эмпирические кривые распределения выборов часто асимметричны и апроксимируются биноминальным законом распределения. Экспериментальная ситуация социометрического обследования весьма близка к ситуации последовательных дихотомических выборов.

Формулы расчёта

Верхняя и нижняя критические границы рассчитываются по следующей общей формуле:

[math]\mathbf{X}=\mathbf \bar{M}+{t \bar{b}}[/math]

где Х – критическое значение количества V(М) выборов; t – поправочный коэффициент, учитывающий отклонение эмпирического распределения от теоретического; b – среднее отклонение; M – среднее количество выборов, приходящихся на одного человека.

Коэффициент t определяется по специальной таблице на основе предварительного вычисления другого коэффициента ОD свидетельствующего о степени отклонения распределения выборов от случайного:

[math]O_\text{D} = \frac{ \mathit{I} \bar{p} - \mathit{I} \bar{q}}{\bar{b}}[/math]

где p – оценка вероятности быть выбранным в данной группе; q – оценка вероятности оказатьcя отвергнутым в данной группе; b – отклонение количества полученных индивидами выборов от среднего их числа, приходящегося на одного члена группы;

p и q, в свою очередь, определяются при помощи следующих формул:

[math]\bar{p} = \frac{\mathbf \bar{M}}{(N-1)}[/math], [math]\bar{q} = {1 - \bar{p}}[/math]

где N – количество участников в группе; M– среднее количество выборов, полученных одним участником.

M вычисляется при помощи формулы:

[math]\bar{M} = \sum_{i=1}^N \frac{d}{(N-1)}[/math]

где d – общее количество выборов, сделанных членами данной группы.

b определяется по формуле:

[math]\bar{b} = \sqrt{{(N-1)}{\cdot \bar{p}}{\cdot \bar{q}}}[/math]

Пример процедуры расчётов

Проиллюстрируем процедуру расчетов. Исследовали группу в 31 человек, участники которой в общей сложности сделали 270 выборов. Найдем среднее количество выборов, приходящихся на одного человека в группе:

[math]\bar{M} - \frac{270}{300} = 9,0[/math]

Определим оценку вероятности быть избранным в данной группе:

[math]\bar{p} = \frac{9,0}{30} = 30[/math]

Вычислим среднее квадратное отклонение:

[math]\bar{b} = \sqrt{{30}{\cdot 0,3}{\cdot (1 - 0,3)}} = 2,51 [/math]

Подсчитаем коэффициент асимметричности:

[math]O_\text{D} = \frac{ 0,7 - 0,3}{2,51} = 0,16[/math]

Теперь по таблице определим величину t отдельно для правой и левой частей распределения. В левой части таблицы приведены значения для нижней границы доверительного интервала, а в правой – для верхней. Для обеих границ (верхней и нижней) значения даны для трех различных вероятностей допустимой ошибки:

[math]p \le 0,05[/math]; [math]p \le 0,01[/math]; [math]p \le 0,001[/math];

Таблица значений коэффициента асимметричности по Сальвосу

Коэффициент

асимметричности ОD

Вероятность ошибки p Коэффициент

асимметричности ОD

Вероятность ошибки p 0,05 0,01 0,001 0,05 0,01 0,001 0,0 -1,64 -2,33 -3,09 0,0 1,64 2,33 3,09 0,1 -1,62 -2,25 -2,95 0,1 1,67 2,40 3,23 0,2 -1,59 -2,18 -2,81 0,2 1,70 2,47 3,38 0,3 -1,56 -2,10 -2,67 0,3 1,73 2,54 3,52 0,4 -1,52 -2,03 -2,53 0,4 1,75 2,62 3,67 0,5 -1,49 -1,95 -2,40 0,5 1,77 2,69 3,81 0,6 -1,46 -1,88 -2,27 0,6 1,80 2,76 3,96 0,7 -1,42 -1,81 -2,14 0,7 1,82 2,83 4,10 0,8 -1,39 -1,73 -2,00 0,8 1,84 2,89 4,24 0,9 -1,35 -1,66 -1,90 0,9 1,86 2,96 4,39 1,0 -1,32 -1,59 -1,79 1,0 1,88 3,02 4,53 1,1 -1,28 -1,52 -1,68 1,1 1,89 3,09 4,67

Поскольку в таблице нет значения, равного 0,16, а есть только значения 0,1 и 0,2, то выберем поправочные коэффициенты, находящиеся между этими табличными значениями.

Для ОD=0,1 поправочный коэффициент составит (-1,62), а для ОD=0,2 – (-1,59). С учетом того, что реальное значение ОD=0,16, возьмем поправочный коэффициент t промежуточного значения и примем его равным (-1,60) (левая половина таблицы).

Проделав подобную операцию и в правой части таблицы, получим второй поправочный коэффициент 1,69, величина которого расположена между табличными значениями для ОD=0,1 и ОD=0,2. Верхнюю критическую границу вычислим, подставив в формулу значение t из правой части таблицы: Xверхн = 9,0 + 1,69 х 2,51 = 13,24.

Для определения нижней границы доверительного интервала используем значение t, взятое из левой части таблицы: Хнижн = 9,0 – 1,6 x 2,51 = 4,98.

В связи с тем, что количество полученных выборов – это всегда целое число, округлим полученные значения до целых чисел.

Теперь можно сделать вывод, что все испытуемые изученной группы, получившие 14 и более выборов, имеют высокий социометрический статус, являются «звездами», а испытуемые, получившие 4 и меньше выборов, – низкий статус, причем, утверждая это, допускаем ошибку не более 5 %.

Если допускать ошибку в 1 %, то из таблицы значения t берем иные:

Xверхн = 9,0 + 3,32 х 2,51 = 17,33; Хнижн = 9,0 – 2,84 x 2,51 = 1,87.

Округлим до целых чисел: Xверхн = 18; Хнижн = 1. Таким образом, допуская ошибку не более, чем на 1 %, можно утверждать, что лидерами являются только те, кто получил не менее 18 выборов, а низкий статус – у испытуемых, получивших меньше двух выборов.


Анализ социоматрицы по каждому критерию дает достаточно наглядную картину взаимоотношений в группе. Могут быть построены суммарные социоматрицы, дающие картину выборов по нескольким критериям, а также социоматрицы по данным межгрупповых выборов.

Основное достоинство социоматрицы – возможность представить выборы в числовом виде, что в свою очередь позволяет проранжировать порядок влияний в группе. На основе социоматрицы строится социограмма – карта социометрических выборов (социометрическая карта), производится расчет социометрических индексов.

См. также

|


Источник: http://psylab.info/Метод_социометрических_измерений/Социометрическая_матрица


Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Как сделать матрицу по социометрии

Похожие новости:






[/SHORT_NEWS_LAST]
Страници: 1 2 3 > >>